skip to main content


Search for: All records

Creators/Authors contains: "Groaz, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.

     
    more » « less
  2. Abstract

    Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell‐sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells—compartmentalization and self‐organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self‐organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells.

    This article is categorized under:

    Biology‐Inspired Nanomaterials > Lipid‐Based Structures

    Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures

     
    more » « less